
CycleCNN- Final Project Report for Deep Learning Class

Maestrati Louis
ENS Paris Saclay

4 Avenue des Sciences, 91190 Gif-sur-Yvette
maestratilouis@gmail.com

Abstract

Convolutional neural networks (CNNs) are known to
produce the state of the art in image recognition. Their be-
havior during training and the theoretical reasons behind
their success remain partially understood matters. In order
to deepen these issues, it is natural to study the geometry
and topology of images and kernel spaces, which are the
neurons of CNNs. To this extent, the field of Topological
Data Analysis (TDA) turns out to be relevant, since it allows
precisely to perform calculations to characterize and dis-
tinguish shapes and spaces, using the concepts of Algebraic
Topology. Indeed, recent research at the interplay between
TDA and Deep Learning provide evidence that spatial fil-
ters of CNNs’ kernels tend to form circular shapes during
training. Our work exploits such empirical observations by
building a new way of parameterizing CNN kernels. The
resulting new architecture, CycleCNN, forces spatial filters
to remain on topological cycles during training. This re-
sults in a drastic reduction of parameters, which strongly
regularises the model.

1. Introduction and Motivation
As is well-known, Convolutional Neural Networks

(CNN) achieve state-of-the-art performance in image clas-
sification. The building blocks of this network are the ker-
nels; which are the neurons of CNNs; and that are modified
during training to achieve image classification.

The optimisation of kernels, e.g. using gradient descent,
is a well-known subject of investigation, for which we have
(partial) convergence results. However, the properties of the
equilibrium state, i.e. of the kernels at convergence, remain
unclear. Such properties are desirable, because systematic
structure can be used to derive new architectures and models
with stronger guarantees.

The study of the equilibrium state is an emergent field
of Deep Learning. Indeed, many researchers seek to ex-
plore the space of kernels and try to get an overall un-
derstanding of its structure. One popular approach is to

analyse and interpret kernels in a relevant low-dimensional
space, as in low ranked kernels [Tai et al., 2015] or sparse
CNNs [Gale et al., 2019], which helps in analyzing local
and global structure of kernels. Such optimal structures can
then be exploited and pre-encoded in the architecture, see
for instance the Wavelet Transform CNNs [Mallat, 1999].

The recent emergent field of Topological Data Analy-
sis (TDA) aims to uncover hidden structures and shapes in
datasets of high dimensionality. Indeed, TDA allows pre-
cisely to perform calculations to characterize and distin-
guish shapes and spaces, using the concepts of Algebraic
Topology. These are the calculations of homology groups,
which intuitively correspond to the numbers of connected
components, circles and spheres of any dimension that can
be inscribed in a space.

It thus seems natural to apply the recent progress and
tools offered by TDA to study the geometry and topology
of image and kernel spaces.

The authors of Topological Approaches to Deep Learn-
ing [Gunnar Carlsson, 2018] adopt such an approach to an-
alyze deep neural networks. They focus on studying the
topology of the space of elementary patches of the kernels,
called spatial filters, obtained after training a convolutional
network. Notably, viewing the set of all spatial filters as a
point cloud in a fixed Euclidean space, the resulting shape
seems to evolove towards a circular configuration during
training.

In this work, we take advantage of the spatial filters’ ten-
dency to form circles during training. Namely, we force the
spatial filters and kernels to evolve from scratch on circular
shapes, and we directly learn the way these circles are em-
bedded in the space of kernels. Below is the summary of
our contribution:

• We build a new architecture called CycleCNN, which
instead of parameterizing each kernel individually, pa-
rameterizes directly the embedding of the topological
shape on which they live;

• In this way, we considerably reduce the number of
parameters/weights needed for training. The intuitive

1

reason for this goes as follows. The only degree of
freedom needed to characterise the embedding of a cir-
cle are its orientation, center and radius. In a traditional
convolutional architecture, the dimension of the space
of parameters grows linearly with the input space, out-
put space and kernel size; by contrast our model im-
poses strong regularization on the kernels space di-
mension. Our model can therefore also be seen as a
method of kernels regularization;

• We demonstrate the ability of our model on various
experiments. On the MNIST dataset, we show that our
models are sufficiently expressive. However, on more
complex classification tasks, e.g. CIFAR, the drastic
reduction of degrees of freedom makes it hard for our
model to compete with classic parameterizations. To
tackle this, we device hybrid models, i.e. we show how
to couple the layers of CycleCNN with standard layers;

• For hybrid models, it is crucial that the parameters of
the CycleCNN layers and those of the standard layer
have similar magnitude and pace of evolution. For this,
we derive consistent choices of initialisation and learn-
ing rates for the CycleCNN parameters.

We note that our model may be viewed as an alterna-
tive approach for dimensionality reduction of kernels. Be-
sides, although we mainly focus on embeddings of the cir-
cle in this paper, it is apparent that the method can be used
with any topological shape, e.g. the Klein bottle observed
by [Gunnar Carlsson, 2018]. Finally, we believe that the in-
herent need of less computational memory of our model is
a great potential for industrial applications.

2. Problem Definition
As is usual in Deep Learning litterature, a spatial fil-

ter is a vector in R3×3, whereas a kernel is a vec-
tor R3×3×#InChannels, where #InChannels is the number
of input channels in the layer of interest.1 Intuitively, a spa-
tial filter is thought of as an elementary patch that is convo-
luted with an image’s channel. The kernel is then obtained
by aggregating spatial filters accross channels.

2.1. A brief Introduction to Topological Cycles

A substantial prerequisite for this work is to understand
the analysis of [Gunnar Carlsson, 2018]. This requires be-
ing used with concepts borrowed from Algebraic Topol-
ogy and their computational counterparts in data analysis.
In this section, we provide a high-level overview of the
key notions, but refer the reader to [Hatcher, 2005] and
[Oudot, 2015] for full introductions to the main concepts
in Algebraic Topology and TDA respectively.

1Note that working in R3×3 is not restrictive. Our analysis is the same
in Rk×k for any k.

Homology groups One of the main goal in Algebraic
Topology is to distinguish between topological spaces, that
is shapes of any kind. The notion that captures the idea of
two spaces being the same is that of homotopy, which is a
weaker form of homeomorphism. Roughly, two spaces X
and Y are homotopic if there are maps f, g going back and
forth between X and Y such that the composition f ◦ g is
a continuous deformation of the identity map, see Fig. 1 for
an example.2

Figure 1. The cup of coffee and the plain torus are homotopic as
one can continuously deform one into the other, see link

It is intuitive that in practice, deciding whether X and
Y are homotopic is very challenging. The homology
groups Hp(X) of the spaceX are algebraic and computable
invariants that precisely help resolving this issue. Namely,
given an integer p, the vector space Hp(X) has a dimen-
sion βp(X) -the so-called p-th betti number of X- that
counts the number of independant p-spheres inscribed inX .
So β0(X) counts the number of (path) connected compo-
nents and β1(X) that of circles, as exemplified in Fig 2.
Being an invariant means that if two spaces are homotopic,
then they yield the same homology groups. So by contra-
position, one can tell X and Y apart whenever βp(X) 6=
βp(Y). That Hp(X) is algebraic means that it can be com-
puted by means of elementary tools of Commutative Alge-
bra, which means that it is computationally tractable. The
only requirement is that X must be equipped with the extra
structure of a triangulation. However, most spaces encoun-
tered in practice, e.g. graphs and smooth manifolds, meet
this requirement.

Persistence barcodes In Machine Learning and Data
analysis, the space/shape at stake is the so-called dataset.
In most scenarios, a dataset can simply be viewed as a
point cloud in Euclidean space. The inherent discrete na-
ture of point clouds makes the homological calculations of
the previous paragraph obsolete, as the betti numbers would
merely count the number of points.

In Persistence theory, one method to address this issue is
to grow balls around each point of the dataset as in Fig. 3,

2Note that for the spaces X and Y to be homeomorphic one would
actually require that the composition f ◦ g is the identity map on the nose.

2

https://fr.wikipedia.org/wiki/Hom\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 19 e\egroup \spacefactor \accent@spacefactor omorphisme#/media/Fichier:Mug_and_Torus_morph.gif

Figure 2. This bretzel has one connected component and three dis-
tinct independent circles. Hence the betti numbers β0 = 1, β1 = 3
and βp = 0 for p > 1.

and compute the betti numbers of the union of balls at dif-
ferent scales. The resulting descriptor is the barcode/ per-
sistence diagram of the dataset, and is a set of intervals.
Each interval [r,R] is the range of radii for which a spe-
cific connected component, loop, sphere or higher dimen-
sional hole, persists: the hole appears at radius r, and per-
sists until it is filled at radius R. In Fig 4, we computed
the barcode of two intersecting circles using the Gudhi soft-
ware [Maria et al., 2014].

Figure 3. Union of balls with a fixed radius around each point of
a point cloud in the plane. We draw an edge (resp. triangle and
tetrahedron) between 2 (resp. 3 and 4) points whenever the corre-
sponding balls intersect. The resulting combinatorial structure is
the so-called Cech Complex, for which it is easy to compute betti
numbers.

Figure 4. The point cloud aranged around two intersecting circles
(left) yields the barcode with 1 interval in degree 0 and 3 intervals
in degree 1 (right). The smaller green interval corresponds to the
small loop formed by the intersection of the circles.

2.2. Topology of the space of spatial filters

Barcodes can be computed for small patches of nat-
ural images, as done in [A.B. Lee and Mumford, 2003,
G. Carlsson and Zomorodian, 2008]. It is then observed

that the barcodes have prominent intervals in homol-
ogy degree 1, from which it is deduced that the
shape formed by the patches tends to be circular.
In [Gunnar Carlsson, 2018], the authors rather investigate
the topological shape formed by the spatial filters of size 3×
3 throughout training of a CNN.

To obtain this shape, the spatial filters are first centered,
reduced and thresholded by variance. Then, they are fil-
tered by codensity, the codensity being the average distance
of a point to its k nearest neighbors. They thus only keep a
percentage ρ of the best spatial filters (those with the low-
est codensity). This was done in order to avoid consider-
ing insignificant spatial filters -one can see as outliers- and
which would confuse the overall topological appearance of
the point cloud. The obtained spatial filters were plotted
in 2D Mapper, another standard tool of TDA for vizual-
izing high dimensional data in a topologically meaningfull
way [Singh et al., 2007]. See Fig 5 for the Mapper repre-
sentation and barcode of the spatial filters of a 1 layer net-
work, after training on the MNIST dataset, and similarly
Fig. 6 for the spatial filters of various layer in a deeper net-
work.

Figure 5.

Figure 6. Mapper Model, with k = 15, ρ = 30%
applied to VGG-16 layers trained on Imagenet. Figure
from [Gunnar Carlsson, 2018].

One can clearly see that each layer tends to form 1D
topological cycles (1 for layers 2 and 3; 2 for the others).

3

This demonstrates the tendancy of spatial filters to system-
atically recover circular configurations throughout training.
Besides, experiments of Data Augmentation of the input im-
ages using spatial filters found in a primary circles resulted
in higher accuracies of the network and further generaliza-
tion abilities [Gunnar Carlsson, 2019]. This is an example
of how the circular structure can be used to improve existing
models.

3. Related Work

As quoted in the introduction, our work investigates the
subject of kernels regularization. The most drastic regu-
larization approach consists in completely removing the set
of weights of a network. This is the approach taken in net-
works based on Wavelet Transforms [Mallat, 1999]. In their
simplest form, such networks replace kernels with mean-
ingful, fixed wavelets, and the training merely reduces to
finding the right combination of the wavelets’ outputs. This
results in highly interpretable and computationally very at-
tractive models. In spirit, our approach is similar in that
it exploits the systematic structure found in complicated
networks after training in order to simplify the architec-
ture/parameterization of the model.

Another approach to kernels’ regularization is sparsifica-
tion. Recently, [Frankle and Carbin, 2018] formulated the
Lottery Ticket Hypothesis which stipulates that all networks
”hide” a sub-network of equivalent performance, meaning
that an important amount of neurons can be prunned with-
out damaging the network performances. A popular exam-
ple of sparsification technic is Magnitude Prunning, which
consists in prunning the weights of least amplitude of the
network [Gale et al., 2019] until we reach the desired spar-
sity. This is in general done progressively during training,
to ensure the network stability.

Finally, we believe that Low Rank regularization is the
closest type of regularization to our model. It consists in
constraining the kernels of CNNs to live in smaller dimen-
sion spaces by encoding a maximum dimensionality of the
kernels in the architecture. This approach is thus by essence
very related to our work, except that our model not only en-
forces lower dimensionality of the space of kernels, it also
enforces the kernels, by architecture, to be on a fixed topo-
logical shape. As an example, [Tai et al., 2015] constrained
the rank of the spatial filters living in Rk×k by replacing
them by a sum of product of ”vertical” spatial filters in Rk×1

with ”horizontal” spatial filters in R1×k. We compared the
results of this approach with our method in section 5.

4. Methodology

In the following section, we describe the CycleCNN
model.

4.1. CycleCNN model

Formally, we call topological cycle in an Euclidean
space Rn any loop without self-intersection. Inside the
huge set of topological cycles, we have the set of ellip-
soids, which we abusively also call circles in the following,
defined geometrically from their center, radius, supporting
2D plane and eccentricity. Although being a quite stringent
class of shapes, ellipsoids are easy to parameterize. Namely,
any ellipsoid can be obtained by applying the right affine
transformation T : R2 → Rn to the standard, unit circle
in S1 ⊆ R2. We call such a map T a transformer hereafter.

Recall from [Gunnar Carlsson, 2018] that spatial filters
of size 3× 3 tend to form a topological cycle in R3×3. Our
model is based on the following slightly stronger hypothe-
sis:

The kernels tend to form a circle in R3×3×InChannels.

Note that this statement is equivalent to asking that the
spatial filters of each channel tend to form a circle. Indeed,
an ellipsoid in R3×3×#InChannels determines #InChannels
ellispoids in R3×3 and conversely.

To parameterize a circle in kernel space, we consider a
transformer

T : R2 → R3×3×#InChannels.

In practice, a transformer is implemented as a fully-
connected layer (FC), which we apply to a regular dis-
cretization of the unit circle S1. Each point of S1, through
the transformer, gives rise to a kernel.

We can in fact use several transformers T1, · · · , Tm in
order to produce m circles in kernel space. This improves
the expressiveness of the model. One example of a model
using a single layer of CycleCNNs with 4 circles of kernels
is detailed in figure 7.

Figure 7. Diagram of a CycleCNN with one layer using 4 circles.

The parameters of the transformer become the only pa-
rameters of the entire layer, and are learnt using the back-
propagation algorithm. The transformer is a FC layer

4

with size (2, 9 × #InChannels), leading to a number
of parameters of 18 × #InChannels encoding the en-
tire layer of convolution. Notice that this number of pa-
rameters in the CycleCNN layer becomes independent of
the number #OutChannels of kernels used for convolu-
tion, and one can compare this amount of parameters to
9×#OutChannels×#InChannels used in a classic layer
of convolution. The ratio of gain in parameters to encode
a layer being 2

#OutChannels ; a layer using 100 CycleCNN
kernels will for example use 98% less parameters than 100
classicaly parameterized kernels.

4.2. Deep transformers

One strong assumption we have made is that the topo-
logical cycles that spatial filters tend to form are actually
circles. However, the geometric rigidity of circles is a quite
stringent requirement, and was not empirically observed
in [Gunnar Carlsson, 2018].

In order to capture a wider class of topological cycles
structures, we consider transformers that may deform the
unit circle non-linearly. This leads us to add activation func-
tions in our transformers and increase its depth. In order for
the resulting transformer T to produce an actual topolog-
ical cycle, it is sufficient to ensure that T is injective, so
that T : S1 → R3×3×#InChannels is indeed a loop without
self-intersection.

To obtain an injective tranformer, we construct multi-
layer FC network as follows. Recall that in any matrix
space, the subspace of full-rank matrices is generic. There-
fore, it is natural to consider a composition of layers in in-
creasing order of dimension, that is of the form:

T : S1 ⊆ R2 → Rp1 → · · · → Rpk = R3×3×#InChannels,

where 2 6 p1 6 · · · 6 pk = 3 × 3 × #InChannels. In-
between each layer, we add a LeakyRelu activation, which
is bijective over the real line. This way, the resulting trans-
former is (generically) an injective map.

Figure 8. An instance of deep transformer used in CycleCNN.

4.3. Hyperparameters scheduling

Initialization of weights To get a benchmark compari-
sion between classical CNN and our implementation, one
challenge is to initialize the weights. We need to find an ini-
tialization of the FCs used in our transformers that comes up

with comparable initial kernel values w.r.t the classical ker-
nels parameterization. To this extent, we studied how ini-
tialization of kernels and Fully Connected Layers are gen-
erally done and came up with the following method of ini-
tialization:

Default initializations of weights in CNN’s kernels and
in fully connected layers are indeed different. The de-
fault initialization of CNN’s kernels sample each individ-
ual weight (a real value) uniformly in [1

−
√
stdCNN

, 1√
stdCNN

],
where

stdCNN := #InChannels×#WidthKernel×#HeightKernel.

This is to ensure that a kernel has 1
3 variance (squared

norm). See this link for the details.
By contrast, as we sample our kernels with a Fully-

Connected Layer applied to the discretized unit circle with
stdFC = dimx, the resulting initial squared norm of a ker-
nel is far from the one corresponding to the classic kernels
initialization.

In fully connected layers, each individual weight is sam-
pled uniformly in [1

−
√
stdFC

, 1√
stdFC

], where

stdFC := dimx, x being an input vector.

This ensures that the output of each neuron (a real value
of the form

∑
wixi) has the same variance, which is pro-

portional to the squared norm of the input vector x =
(x1, · · · , xdim x). Indeed, we have

Var(
∑

wixi) =
∑

Var(wi)x
2
i =

1

3stdFC

∑
x2i =

‖x‖22
3stdFC

.

Let us see the impact of parameterizing kernels of a CNN
layer via a fully connected layer applied on a fixed input x.
For instance, in our model, the elements x are taken from
the unit circle in R2, leading to ‖x‖22 = 1. For simplicity,
let us first assume that we deal with one fully connnected
layer, i.e. a matrix, in order to generate a kernel from x. We
then have a matrix M of size (dimx,#WidthKernel ×
#HeightKernel × #InChannels). Each entry of the out-
putted kernel Mx has thus a variance (i.e. squared norm)
‖x‖22

3stdFC
= 1

3stdFC
, hence as a whole, the kernel has squared

norm

#WidthKernel×#HeightKernel×#InChanels× 1

3#stdFC
.

In order to recover the 1
3 variance of the kernels, we sim-

ply change the definition of stdFC to

stdFC := #InChannels×#WidthKernel×#HeightKernel.

Learning Rate Schedule In all our experiments we used
Stochastic Gradient Descent (SGD). This was done to stick

5

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

with the optimiser used in [Gunnar Carlsson, 2018]. How-
ever, we noticed that giving to the Transformer a learning
rate similar to the other layers of the model makes the over-
all model diverging. We can explain this behavior by the
fact that the transformers encode a very high amount of in-
formation. Indeed, the transformer is responsible for em-
bedding of all the kernels, so a small update of the trans-
former’s weights result in important variations of the set of
kernels. In practice, this resulted in ellipsoid with diverging
radius.

To solve this issue, we provide our model with two dif-
ferent initial values of learning rates: lrtransf and lr used
respectively for the tranformers and the rest of the architec-
ture. We tried various hyperparameters for SGD and noticed
that a factor of decrease γ = 0.9 and a ratio lrtransf

lr = 0.1
achieve optimal performances.

5. Evaluation
Our experiments have been conducted on MNIST and on

CIFAR-10 as a more challenging task for our model. Those
are the datasets used in [Gunnar Carlsson, 2018] which is
the article that motivated our work. All our models have
been trained with GoogleColab on 12GB NVIDIA Tesla
K80 GPU.

5.1. Baseline Evaluations

5.1.1 Experiments on MNIST

We first looked at the performances of our model on the
MNIST dataset as a sanitary check. We applied a one-
layer-CycleCNN to the images, followed by a ’readout’
(Feed-Forward Layer) to obtain logits for classification.
While keeping the number of kernels in the layer constant
(100 kernels), we changed the number of circles used for
parameterization.

This results in 3 different models, using:

• a CycleCNN layer parameterized with 1 circle of 100
kernels

• a CycleCNN layer parameterized with 5 circles of 20
kernels

• a CycleCNN layer parameterized with 10 circles of 10
kernels

These models performances has been compared to a
classic CNN layer, also using 100 kernels.

We can see in figure 9 the accuracies and losses of our
models. All models using our parameterization perform
reasonably well. We observe that using only 5 circles lead
to comparable accuracies on training and test set w.r.t. the

baseline model. Our model using 5 circles achieves 100 %
accuracy on the trainset and 97.5% on the testset, whereas
the baseline achieves 100% / 98.2%. Their needs in pa-
rameters for the convolution layer are however drastically
different; the baseline model using 100× 3× 3× 1 = 900
parameters whereas our model uses only 5×2×3×3 = 90
parameters. Interestingly, reducing the number of circles to
1 worsen the performances (leading to 99.2% / 97.2% accu-
racies) and increasing the number of circles to 10 does not
change the accuracies . The kernels in the layer thus seem
to stabilise around 5 circles.

Figure 9. Results on MNIST:1: Single layer of a classic CNN
with 100 kernels; 2: CycleCNN layer, parameterized by 1 circle
of 100 points; 3: CycleCNN layer, parameterized by 5 circles of
20 points;4: CycleCNN layer, parameterized by 10 circles of 10
points

5.1.2 Experiments on CIFAR-10

We then looked at the performances of our model on a more
challenging dataset: CIFAR-10. We trained the same 4
models, described in the MNIST experiments and the re-
sults can be seen in Figure 10. Different remarks can be
done on the results:

• looking at the curves of the test-loss during training, it
seems the models using CycleCNN are less susceptible
to overfit. Indeed, the baseline model test-loss changes
of convexity, while our models test-loss curves remain
stable;

• as was the case on MNIST, a CycleCNN using only
one circle seems too much constrained, and the model
loses 20% of accuracy on trainset and 15% of accuracy
on testset compared to the baseline;

• with a reasonable amount of circles (≥ 5), the Cy-
cleCNN reaches the trainset accuracy of the baseline
(91%), and get close to the baseline testset accuracy
(60% with 5 circles, 62% with 10 circles versus 67%
for the baseline). Once again, the gain in parame-
ter is important: the baseline model using 100 × 3 ×
3 × 3 = 2700 parameters for convolution whereas
5 × 2 × 3 × 3 × 3 = 270 parameters for the model
using 5 circles.

6

Figure 10. Results on CIFAR-10:1: Single layer of a classic CNN
with 100 kernels; 2: CycleCNN layer, parameterized by 1 circle
of 100 points; 3: CycleCNN layer, parameterized by 5 circles of
20 points;4: CycleCNN layer, parameterized by 10 circles of 10
points

5.2. Experiments on a Deep Network

To challenge even further our CycleCNN parameteriza-
tion, we did some experiments with a deep CNN network
of 4 layers on CIFAR-10 dataset. The network architecture
can be found in figure 12.

We put in competition the network parameterized with
classic CNNs and the network parameterized with our Cy-
cleCNNs. The network using CycleCNNs has been param-
eterized as follow:

• 1st Layer: 1 circle of kernels with 16 points (resulting
in 16 kernels)

• 2nd Layer: 2 circles of kernels with 16 points (result-
ing in 32 kernels)

• 3rd cLayer: 4 circles of kernels with 16 points (result-
ing in 64 kernels)

• 4th layer: 2 cercles of kernels with 32 points (resulting
in 64 kernels)

Our model uses 2×3×9+2×2×16×9+2×4×32×9+
2×2×64×9 = 5238 parameters for convolution, whereas
16×3×9+32×16×9+64×32×9+64×64×9 = 60336
parameters for the classic CNN.

The obtained results can be be seen in figure 11. Overall,
our model loses 20% on both training set and testset. This
loss is quite significant, and can be explained by the very
low number of degrees of freedom in CycleCNN compared
to the baseline. This suggests that parameterizing all convo-
lutional layers with transformers is not expressive enough.
Rather, it is natural to have both traditional kernels and ker-
nels generated by transformers in a single layer; we devel-
opp this approach in the next section.

5.3. Experiments on an hybrid model

We introduce hybrid architectures that combine both
implementations: classical CNN kernels in pair with Cy-
cleCNN kernels. Testing different ratios between the two

Figure 11. Results on CIFAR-10: Left: Accuracy and loss of the
Model with classic CNN ; Right: Accuracy and loss of the model
with CycleCNN.

types of kernels allows to quantify the influence of the Cy-
cleCNN layer.

A model of two layers of convolution is parameterized
as follow:

• A first Layer of convolution of 32 kernels classicaly
parameterized.

• A second Layer of convolution of 64 kernels. A certain
ratio h of the kernels being parameterized by our Cy-
cleCNN models (we call them cyclic kernels in figure
14) and a ratio 1− h classicaly parameterized.

• A Readout Layer (FC layer) used to predict logits for
classification.

The cyclic kernels have been systematically parameter-
ized as being on 4 circles. A diagram of the architecture is
presented in Figure 13.

In Figure 14 we give the results of the model for different
amounts h of ”classic” and ”cyclic” kernels in the second
layer, with a varying depth of the transformer used for pa-
rameterizing the cyclic kernels. We also write in the last col-
umn the initial learning rates used for the transformer and
the rest of the model (as explained in section 4.3). Looking
at the relative performances w.r.t. the need in parameters
in the second layer of convolution, we make the following
observations.

• Comparing the 1st line of the table with the two last
lines of the table: if the layer only uses cyclic kernels,
the drop in accuracy is not too strong (85/75 going to
72/60).

• Adding cyclic kernels systematically results in a gain
of performances; and more importantly this gain is ob-
tained with a very low cost in parameters.

7

Figure 12. Diagram of the model used for comparisions.

Figure 13. Diagram of the hybrid model.

6. Conclusion
We believe this work is a further step in understanding

and exploiting the global topological structure observed in
deep neural networks. With the CycleCNN architecture, we
think of the shape formed by the kernels instead of focusing
on each kernel individually. Parameterising the circle di-
rectly, the CycleCNN model is strongly regularised because
(i) the number of free parameters is considerably reduced,
and (ii) the kernels are forced by design to live on the circle.
For some challenging classification tasks, e.g. CIFAR, the
model eventually lacks expressiveness. However, consider-
ing hybrid models, our experiments provide evidence that
CycleCNN layers can be viewed as a cheap boost for ex-
isting models. We believe that there are various interesting
directions to explore, which we leave for future work:

• Since a CycleCNN layer is essentially described by a
circle, the resulting architecture is highly interpretable.
Namely, it would be interesting to analyze the evolu-
tion of the ellipsoids in kernel space during training,
accross various classification tasks.

• As observed in [Gunnar Carlsson, 2018], the spatial
filters in deep networks, e.g. VGG16, can form more
complex topological structures than cycles, e.g. the
Klein bottle. We note that, as long as we are given a
fixed embedding of a given topological shape in Eu-
clidean space, together with a regular sampling of this
shape, our approach to transferring this shape in kernel
space can be adapted. So we may for instance consider
the embedding of the Klein Bottle in R4 considered
in [Gunnar Carlsson, 2018], the canonical embeddings
of the 2-torus, or in fact any graph or cell complex. It

would be nice to compare the resulting architectures.
Once a zoo of shapes is established, an ambitious task
is to derive a procedure which, given a classification
task, decide automatically which topological shape in-
duces the most relevant architecture.

• It may be desirable to provide kernels in the Cy-
cleCNN architecture with more degrees of freedoms.
For this, a natural idea is to associate an angle param-
eter to each kernel, allowing the kernel to move inside
the circle.

References
[A.B. Lee and Mumford, 2003] A.B. Lee, K. P. and Mumford, D.

(2003). The non-linear statistics of high-contrast patches in
natural images. In Intl. Jour.of Computer Vision.

[Frankle and Carbin, 2018] Frankle, J. and Carbin, M. (2018).
The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

[G. Carlsson and Zomorodian, 2008] G. Carlsson, T. Ishkhanov,
V. d. S. and Zomorodian, A. (2008). On the local behavior of
spaces of natural images. In Intl. Jour. Computer Vision.

[Gale et al., 2019] Gale, T., Elsen, E., and Hooker, S. (2019).
The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574.

[Gunnar Carlsson, 2018] Gunnar Carlsson, R. B. G. (2018).
Topological approaches to deep learning.

[Gunnar Carlsson, 2019] Gunnar Carlsson, R. B. G. (2019). Ex-
position and interpretation of the topology of neural networks.

[Hatcher, 2005] Hatcher, A. (2005). Algebraic topology. .

[Mallat, 1999] Mallat, S. (1999). A wavelet tour of signal pro-
cessing. Elsevier.

[Maria et al., 2014] Maria, C., Boissonnat, J.-D., Glisse, M., and
Yvinec, M. (2014). The gudhi library: Simplicial complexes
and persistent homology. In International Congress on Mathe-
matical Software, pages 167–174. Springer.

[Oudot, 2015] Oudot, S. Y. (2015). Persistence theory: from
quiver representations to data analysis, volume 209. Ameri-
can Mathematical Society Providence.

[Singh et al., 2007] Singh, G., Mémoli, F., and Carlsson, G.
(2007). Topological methods for the analysis of high
dimensional data sets and 3d object recognition. In
PBG@Eurographics.

[Tai et al., 2015] Tai, C., Xiao, T., Zhang, Y., Wang, X., et al.
(2015). Convolutional neural networks with low-rank regular-
ization. arXiv preprint arXiv:1511.06067.

8

#Classic kernels #Cyclic kernels Train Test #parameters CNN transformer size lr
64 0 85.2 % 75 % 18432 x 0.05
64 0 85.5 % 74.5 % 18432 x 0.01
48 16 84.8 % 74 % 13918 3 0.01/0.001
48 16 84.5 % 73.8 % 13851 1 0.01/0.001
48 0 84 % 73.2 % 13824 x 0.01
32 32 82.3 % 73.5 % 9404 3 0.01/0.001
32 32 81.5 % 72.8 % 9270 1 0.01/0.001
32 0 80.8 % 72.2 % 9216 x 0.01
16 48 75 % 70.6 % 4890 3 0.01/0.001
16 48 79 % 71.2 % 4689 1 0.01/0.001
16 0 73.5 % 69.3 % 4608 x 0.01
0 64 54 % 52 % 376 3 0.01/0.001
0 64 72 % 60 % 108 1 0.01/0.001

Figure 14. Results for a layer parameterized with different amounts Classic Kernels and Cyclic kernels. The model can be found in Annexe.
The Cycle kernels are constructed with 4 circles.

9

	. Introduction and Motivation
	. Problem Definition
	. A brief Introduction to Topological Cycles
	. Topology of the space of spatial filters

	. Related Work
	. Methodology
	. CycleCNN model
	. Deep transformers
	. Hyperparameters scheduling

	. Evaluation
	. Baseline Evaluations
	Experiments on MNIST
	Experiments on CIFAR-10

	. Experiments on a Deep Network
	. Experiments on an hybrid model

	. Conclusion

