# A Topological approach to convolutional neural networks CycleCNN

Louis Maestrati

25/01/2021

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 -

## CycleCNN: between Algebraic Topology and Deep Learning



25/01/2021 2/11

イロト イヨト イヨト イヨト

### Homology in convolutional networks: Homology in CNNs



Figure: Convolutional neural network studied in [Carlson, 2018], translated from the formalism introduced in the paper.

Training on MNIST and CIFAR-10:



Figure: 1st Figure: Mapper Model applied to the 1st layer of the network trained on MNIST, 2nd Figure:

### Homology in convolutional networks: Homology in CNNs



Figure: Mapper Model applied to the layers VGG-16 trained on ImageNet (Figures from de [Carlson, 2018])

Louis Maestrati

A Topological approach to convolutional neural networ

25/01/2021 4/11

イロト イヨト イヨト イヨ

### Hypothesis and Motivations

Observations The set of spatial filters tend to form ellipsoids in  $\mathbb{R}^9$ 

Hypothesis The set of kernels tend to form ellipsoids in  $\mathbb{R}^{9\times\#\mathit{InputChannels}}$ 

< □ > < □ > < □ > < □ > < □ >

≥ > ≥ ∽ < ○</p>
25/01/2021 5/11

Observations The set of spatial filters tend to form ellipsoids in  $\mathbb{R}^9$ 

Hypothesis The set of kernels tend to form circles in  $\mathbb{R}^{9 \times \# \textit{InputChannels}}$ 

イロト イヨト イヨト イヨト

#### We force these kernels to evolve from scratch on such ellipsoids

The hope is twice:

- **9** Faster Training: the optimal topological shape is already encoded in the architecture.
- 2 Less parameters: the gain in parameters need -and though in computational memory- is very important.

### CycleCNN: Architecture



Figure: Diagram of the circle transformation in the kernels space  $\mathbb{R}^9$ 



## CycleCNN: Several layers model



Figure: Diagram of the model used for comparisions.

Put in competition with avec:

- 1st Layer: 1 circle of kernels with 16 points (resulting in 16 kernels)
- 2nd Layer: 2 circles of kernels with 16 points (resulting in 32 kernels)
- 3rd cLayer: 4 circles of kernels with 16 points (resulting in 64 kernels)
- 4th layer: 2 cercles of kernels with 32 points (resulting in 64 kernels)

Our model uses  $2 \times 3 \times 9 + 2 \times 2 \times 16 \times 9 + 2 \times 4 \times 32 \times 9 + 2 \times 2 \times 64 \times 9 = 5238$  parameters for convolution, whereas  $16 \times 3 \times 9 + 32 \times 16 \times 9 + 64 \times 32 \times 9 + 64 \times 64 \times 9 = 60336$  parameters for the classic CNN.

< ロ > < 同 > < 回 > < 回 >

### Some results

| #Classic kernels | #Cyclic kernels | Train  | Test   | #parameters CNN | transformer size | lr         |
|------------------|-----------------|--------|--------|-----------------|------------------|------------|
| 64               | 0               | 85.2 % | 75 %   | 18432           | x                | 0.05       |
| 64               | 0               | 85.5 % | 74.5 % | 18432           | x                | 0.01       |
| 48               | 16              | 84.8 % | 74 %   | 13918           | 3                | 0.01/0.001 |
| 48               | 16              | 84.5 % | 73.8 % | 13851           | 1                | 0.01/0.001 |
| 48               | 0               | 84 %   | 73.2 % | 13824           | x                | 0.01       |
| 32               | 32              | 82.3 % | 73.5 % | 9404            | 3                | 0.01/0.001 |
| 32               | 32              | 81.5 % | 72.8 % | 9270            | 1                | 0.01/0.001 |
| 32               | 0               | 80.8 % | 72.2 % | 9216            | x                | 0.01       |
| 16               | 48              | 75 %   | 70.6 % | 4890            | 3                | 0.01/0.001 |
| 16               | 48              | 79 %   | 71.2 % | 4689            | 1                | 0.01/0.001 |
| 16               | 0               | 73.5 % | 69.3 % | 4608            | x                | 0.01       |
| 0                | 64              | 54 %   | 52 %   | 376             | 3                | 0.01/0.001 |
| 0                | 64              | 72 %   | 60 %   | 108             | 1                | 0.01/0.001 |

Figure: Results for a layer parameterized with different amounts Classic Kernels and Cyclic kernels. The model can be found in Annexe. The Cycle kernels are constructed with 4 circles.

ヘロト ヘロト ヘヨト ヘヨト

- Encouraging results, with few parameters we are able to increase accuracy but more a "boosting" method than a new CNN parameterization
- $\bullet\,$  Topological circles are not necessarily ellipsoids: the notion of "thickness" is lost  $\to\,$  future improvement
- initialization and learning rates for the transformers are critical choices

< □ > < □ > < □ > < □ > < □ >

### Références



Gunnar Carlsson, Rickard Bru el Gabrielsso. *Topological Approaches to Deep Learning.* arXiv:1811.01122, 2018.



Frédéric Chazal, Bertrand Michel.

An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists..

arXiv preprint arXiv:1710.04019v1, 2017.



Topaz CM, Ziegelmeier L, Halverson T. *Topological Data Analysis of Biological Aggregation Models.*. PLoS ONE 10(5): e0126383., 2015.

The

11/11

25/01/2021

イロト イヨト イヨト イヨト